Introduction to cell-centered Lagrangian schemes

François Vilar

Institut Montpelliérain Alexander Grothendieck
Université de Montpellier

September 13th, 2017
1 Introduction

2 Gas dynamics system of equations

3 First-order numerical scheme for the 2D gas dynamics

4 High-order extension in the 2D case

5 Numerical results in 2D
Eulerian formalism (spatial description)
- fixed referential attached to the observer
- fixed observation zone through the fluid flows

Lagrangian formalism (material description)
- moving referential attached to the material
- observation zone moved and deformed as the fluid flows

Lagrangian formalism advantages
- adapted to problems undergoing large deformations
- naturally tracks interfaces in multi-material flows
- avoids the numerical diffusion of the convection terms

Lagrangian formalism drawbacks
- Robustness issue in the case of strong vorticity or shear flows
 \[\Rightarrow \] ALE method (Arbitrary Lagrangian-Eulerian)
Cell-centered formulation

Staggered formulation

\(\rho \ \varepsilon \ u \)

\(\Omega_c \)

\(\Omega_p \)
1 Introduction

2 Gas dynamics system of equations

3 First-order numerical scheme for the 2D gas dynamics

4 High-order extension in the 2D case

5 Numerical results in 2D
Gas dynamics system of equations

Eulerian description

Definitions

- ρ the fluid density
- u the fluid velocity
- e the fluid specific total energy
- p the fluid pressure
- $\varepsilon = e - \frac{1}{2} u^2$ the fluid specific internal energy

Euler equations

\[
\frac{\partial \rho}{\partial t} + \nabla_x \cdot (\rho \ u) = 0
\]

\[
\frac{\partial \rho \ u}{\partial t} + \nabla_x \cdot (\rho \ u \otimes u + p \ I_d) = 0
\]

\[
\frac{\partial \rho \ e}{\partial t} + \nabla_x \cdot (\rho \ u \ e + p \ u) = 0
\]

Thermodynamical closure

- $p = p(\rho, \varepsilon)$

Equation of state
Moving referential

- X is the position of a point of the fluid in its initial configuration
- $x(X, t)$ is the actual position of this point, moved by the fluid flow

Trajectory equation

\[
\frac{\partial x(X, t)}{\partial t} = u(x(X, t), t)
\]

- $x(X, 0) = X$

Material derivative

- $f(x, t)$ is a smooth fluid variable
\[
\frac{df(x, t)}{dt} = \frac{\partial f(x, t)}{\partial t} + u \cdot \nabla_x f(x, t)
\]
Definitions

- \(\tau = \frac{1}{\rho} \) the specific volume
- \(U = (\tau, u, e)^t \) the solution vector
- \(F(U) = (u, 1(1) \rho, 1(2) \rho, 1(3) \rho, \rho u)^t \) where \(1(i) = (\delta_{i1}, \delta_{i2}, \delta_{i3})^t \)
- \(a = a(\rho, \varepsilon) \) the sound speed

Updated Lagrangian formulation

- \(\rho \frac{dU}{dt} + \nabla_x \cdot F(U) = 0 \)

Moving configuration

Non-conservative formulation

- \(\rho \frac{dU}{dt} + A_x(U) \frac{\partial U}{\partial x} + A_y(U) \frac{\partial U}{\partial y} + A_z(U) \frac{\partial U}{\partial z} = 0 \)
- \(A_n = A_x n_x + A_y n_y + A_z n_z \) with \(n \) a unit vector
- \(\lambda(U) = \{-\rho a, 0, \rho a\} \) the eigenvalues of \(A_n(U) \)
Deformation gradient tensor
- \(J = \nabla_x x \)
- \(|J| = \det J > 0 \)
- \(\nabla_x . (|J|J^{-t}) = 0 \)

Jacobian of the fluid flow
- Positive control volume
- Piola compatibility condition

Mass conservation
- \(\int_{\omega(0)} \rho^0 \, dV = \int_{\omega(t)} \rho \, dv \)
- \(\int_{\omega(t)} \rho \, dv = \int_{\omega(0)} \rho \, |J| \, dV \)
- \(\rho \, |J| = \rho^0 \)

Total Lagrangian formulation
- \(\rho^0 \frac{dU}{dt} + \nabla_x . (|J|J^{-1}F(U)) = 0 \)
- Fixed configuration
Introduction

Gas dynamics system of equations

First-order numerical scheme for the 2D gas dynamics

High-order extension in the 2D case

Numerical results in 2D
Définitions

- $0 = t^0 < t^1 < \cdots < t^N = T$: a partition of the time domain $[0, T]$
- $\omega^0 = \bigcup_{c=1}^l \omega_c^0$: a partition of the initial domain ω^0
- ω_c^n : the image of ω_c^0 at time t^n through the fluid flow
- m_c : the constant mass of cell ω_c
- $U_c^n = (\tau_c^n, u_c^n, e_c^n)^t$: the discrete solution

(a) Straight line edges
(b) Conical edges
(c) Polynomial edges

Figure: Generic polygonal cell
Integration

- \(U_{c}^{n+1} = U_{c}^{n} - \frac{\Delta t^{n}}{m_{c}} \int_{\partial \omega_{c}} \overline{F} \cdot n \, ds \)

- Integration of the cell boundary term (analytically, quadrature, ...)

General first-order finite volumes scheme

- \(U_{c}^{n+1} = U_{c}^{n} - \frac{\Delta t^{n}}{m_{c}} \sum_{q \in Q_{c}} \overline{F}_{qc} \cdot l_{qc} n_{qc} \)

- \(\overline{F}_{qc} = (-\overline{u}_{q}, 1(1) \overline{p}_{qc}, 1(2) \overline{p}_{qc}, \overline{p}_{qc} \overline{u}_{q})^{t} \) numerical flux at point \(q \)

- \(x_{q}^{n+1} = x_{q}^{n} + \Delta t^{n} \overline{u}_{q} \)

Definitions

- \(Q_{c} \) the chosen control point set of cell \(\omega_{c} \)

- \(l_{qc} n_{qc} \) some normals to be defined
Remark

- \overline{F}_{qc} is local to the cell ω_c
- Only $\overline{u}_{qc} = \overline{u}_q$ needs to be continuous, to advect the mesh
- Loss of the scheme conservation?

Figure: Points neighboring cell sets

1D numerical fluxes

- $\overline{p}_{qc} = p^n_c - \tilde{z}_{qc} (\overline{u}_q - u^n_c) \cdot n_{qc}$
- $\tilde{z}_{qc} > 0$ local approximation of the acoustic impedance
Conservation

- \(\sum_c m_c \mathbf{U}_c^{n+1} = \sum_c m_c \mathbf{U}_c^n + \text{BC} \)

- For sake of simplicity, we consider BC = 0

- Necessary condition: \(\sum_c \sum_{q \in Q_c} \bar{p}_{qc} l_{qc} n_{qc} = 0 \)

Example of a solver: LCCDG schemes

- Conditions suffisantes

 \(\forall p \in \mathcal{P}(\omega), \sum_{c \in C_p} [\bar{p}_{pc} l_{pc} n_{pc} + \bar{p}_{pc} l_{pc} n_{pc}^+] = 0 \)

 \[\Rightarrow \bar{u}_p = \left(\sum_{c \in C_p} M_{pc} \right)^{-1} \sum_{c \in C_p} \left(M_{pc} \mathbf{U}_c^n + p_c^n l_{pc} n_{pc} \right) \]

- \(\forall q \in \mathcal{Q}(\omega) \setminus \mathcal{P}(\omega), (\bar{p}_{qL} - \bar{p}_{qR}) l_{qL} n_{qL} = 0 \iff \bar{p}_{qL} = \bar{p}_{qR} \)

 \[\Rightarrow \bar{u}_q = \left(\frac{\tilde{z}_{qL} \mathbf{U}_L^n + \tilde{z}_{qR} \mathbf{U}_R^n}{\tilde{z}_{qL} + \tilde{z}_{qR}} \right) - \frac{p_R^n - p_L^n}{\tilde{z}_{qL} + \tilde{z}_{qR}} n_{qf_{pp+}} \]
Convex combination

\[
U_{c}^{n+1} = U_{c}^{n} - \frac{\Delta t^{n}}{m_c} \sum_{q \in Q_c} \bar{F}_{qc} \cdot l_{qc} n_{qc} + \frac{\Delta t^{n}}{m_c} F(U_{c}^{n}) \cdot \sum_{q \in Q_c} l_{qc} n_{qc} = 0
\]

\[
U_{c}^{n+1} = (1 - \lambda_{c}) U_{c}^{n} + \sum_{q \in Q_c} \lambda_{qc} \bar{U}_{qc}
\]

Definitions

\[
\lambda_{qc} = \frac{\Delta t^{n}}{m_c} \tilde{z}_{qc} l_{qc} \quad \text{and} \quad \lambda_{c} = \sum_{q \in Q_c} \lambda_{qc}
\]

\[
\bar{U}_{qc} = U_{c}^{n} - \frac{\bar{F}_{qc} - F(U_{c}^{n})}{\tilde{z}_{qc}} \cdot n_{qc}
\]

CFL condition

\[
\Delta t^{n} \leq \frac{m_c}{\sum_{q \in Q_c} \tilde{z}_{qc} l_{qc}} \left(= \frac{|\omega|}{a_{c}^{n}} \right) \quad \text{if} \quad \tilde{z}_{qc} \equiv z_{c}^{n} = \rho_{c}^{n} a_{c}^{n}
\]
Semi-discret first-order scheme

\[m_c \frac{d U_c}{d t} = - \sum_{q \in Q_c} F_{qc} \cdot l_{qc} n_{qc} \]

Gibbs identity

\[T \, dS = d\varepsilon + p \, d\tau = d\epsilon - \underline{u} \cdot d\underline{u} + p \, d\tau \]

Semi-discret production of entropy

\[m_c \, T_c \frac{d S_c}{d t} = m_c \frac{d e_c}{d t} + \underline{u}_c \cdot m_c \frac{d \underline{u}_c}{d t} + p_c \, m_c \frac{d \tau_c}{d t} \]

\[m_c \, T_c \frac{d S_c}{d t} = \sum_{q \in Q_c} \tilde{z}_{qc} \, l_{qc} \left[(\overline{u}_q - \underline{u}_c) \cdot \underline{n}_{qc} \right]^2 \geq 0 \]

Positivity of the discrete scheme

François Vilar (IMAG)
Cell-centered Lagrangian schemes
September 13th, 2017
12 / 36

1. Introduction

2. Gas dynamics system of equations

3. First-order numerical scheme for the 2D gas dynamics

4. High-order extension in the 2D case

5. Numerical results in 2D
High-order extension of the finite-volume scheme

- MUSCL, (W)ENO, DG, ...

Mean values equation

\[U_{c}^{n+1} = U_{c}^{n} - \frac{\Delta t^{n}}{m_{c}} \sum_{q \in Q_{c}} \bar{F}_{qc} \cdot l_{qc} n_{qc} \]

- In \(\bar{F}_{qc} \), the mean values are substituted by the high-order values \(U_{qc} \) in \(\omega_{c} \) at points \(q \)

Updated or total Lagrangian formulation

\[\rho \frac{dU}{dt} + \nabla x \cdot F(U) = 0 \quad \text{ou} \quad \rho^{0} \frac{dU}{dt} + \nabla x \cdot (|J| J^{-1} F(U)) = 0 \]

Piecewise polynomial approximation

- \(U_{h,c}^{n}(x) \) the polynomial approximation of the solution on \(\omega_{c}^{n} \)
- \(U_{h,c}^{n}(X) \) the polynomial approximation of the solution on \(\omega_{c}^{0} \)
- \(U_{qc} = U_{h,c}^{n}(x_{q}) \) (moving config.) or \(U_{qc} = U_{h,c}^{n}(X_{q}) \) (fixed config.)
Numerical results in 2D

2nd order scheme

Introduction

Gas dynamics system of equations

First-order numerical scheme for the 2D gas dynamics

High-order extension in the 2D case

Numerical results in 2D
Numerical results in 2D
2nd order scheme

Sedov point blast problem

(a) Pressure field

(b) Density profiles

Figure: Solution at time $t = 1$ for a Sedov problem on a 30×30 Cartesian mesh
Sedov point blast problem

Figure: Solution at time $t = 1$ for a Sedov problem on a 30×30 Cartesian mesh
Sedov point blast problem

(c) Triangular grid - 1110 cells
(d) Polygonal grid - 775 cells

Figure: Initial unstructured grids for Sedov point blast problem
Sedov point blast problem

Figure: Solution at time $t = 1$ for a Sedov problem on a grid made of 1110 triangular cells
Sedov point blast problem

![Density field](image)

![Density profiles](image)

Figure: Solution at time $t = 1$ for a Sedov problem on a grid made of 775 polygonal cells
Underwater TNT explosion

Figure: Solution at time $t = 2.5 \times 10^{-4}$ for a underwater TNT explosion on a 120×9 polar mesh
Underwater TNT explosion

Figure: Solution at time $t = 2.5 \times 10^{-4}$ for a underwater TNT explosion on a 120×9 polar mesh
Aluminium projectile impact problem

Figure: Solution at time $t = 0.05$ for a projectile impact problem on a 100×10 Cartesian mesh
Aluminium projectile impact problem

Figure: Solution at time $t = 0.05$ for a projectile impact problem on a 100×10 Cartesian mesh
Taylor-Green vortex

Figure: Final deformed grids at time $t = 0.75$, on a 10×10 Cartesian mesh
Taylor-Green vortex

Figure: Final deformed grids at time $t = 0.75$, on a 10×10 Cartesian mesh
Convergence rates

<table>
<thead>
<tr>
<th>h</th>
<th>$E_{L_1}^h$</th>
<th>$q_{L_1}^h$</th>
<th>$E_{L_2}^h$</th>
<th>$q_{L_2}^h$</th>
<th>$E_{L_\infty}^h$</th>
<th>$q_{L_\infty}^h$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{1}{10}$</td>
<td>5.06E-3</td>
<td>1.94</td>
<td>6.16E-3</td>
<td>1.93</td>
<td>2.20E-2</td>
<td>1.84</td>
</tr>
<tr>
<td>$\frac{1}{20}$</td>
<td>1.32E-3</td>
<td>1.98</td>
<td>1.62E-3</td>
<td>1.97</td>
<td>5.91E-3</td>
<td>1.95</td>
</tr>
<tr>
<td>$\frac{1}{40}$</td>
<td>3.33E-4</td>
<td>1.99</td>
<td>4.12E-4</td>
<td>1.99</td>
<td>1.53E-3</td>
<td>1.98</td>
</tr>
<tr>
<td>$\frac{1}{80}$</td>
<td>8.35E-5</td>
<td>2.00</td>
<td>1.04E-4</td>
<td>2.00</td>
<td>3.86E-4</td>
<td>1.99</td>
</tr>
<tr>
<td>$\frac{1}{160}$</td>
<td>2.09E-5</td>
<td>-</td>
<td>2.60E-5</td>
<td>-</td>
<td>9.69E-5</td>
<td>-</td>
</tr>
</tbody>
</table>

Table: Convergence rates on the pressure for a 2nd order DG scheme.
Taylor-Green vortex

Figure: Final deformed grids at time $t = 0.75$, on a 10×10 Cartesian mesh
Taylor-Green vortex

Figure: Final deformed grids at time $t = 0.75$, on a 10×10 Cartesian mesh
Convergence rates

<table>
<thead>
<tr>
<th>h</th>
<th>$E_{L_1}^h$</th>
<th>$q_{L_1}^h$</th>
<th>$E_{L_2}^h$</th>
<th>$q_{L_2}^h$</th>
<th>$E_{L_\infty}^h$</th>
<th>$q_{L_\infty}^h$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{1}{10}$</td>
<td>2.67E-4</td>
<td>2.96</td>
<td>3.36E-7</td>
<td>2.94</td>
<td>1.21E-3</td>
<td>2.86</td>
</tr>
<tr>
<td>$\frac{1}{20}$</td>
<td>3.43E-5</td>
<td>2.97</td>
<td>4.36E-5</td>
<td>2.96</td>
<td>1.66E-4</td>
<td>2.93</td>
</tr>
<tr>
<td>$\frac{1}{40}$</td>
<td>4.37E-6</td>
<td>2.99</td>
<td>5.59E-6</td>
<td>2.98</td>
<td>2.18E-5</td>
<td>2.96</td>
</tr>
<tr>
<td>$\frac{1}{80}$</td>
<td>5.50E-7</td>
<td>2.99</td>
<td>7.06E-7</td>
<td>2.99</td>
<td>2.80E-6</td>
<td>2.99</td>
</tr>
<tr>
<td>$\frac{1}{160}$</td>
<td>6.91E-8</td>
<td>-</td>
<td>8.87E-8</td>
<td>-</td>
<td>3.53E-7</td>
<td>-</td>
</tr>
</tbody>
</table>

Table: Convergence rates on the pressure for a 3rd order DG scheme
Polar meshes - symmetry preservation

Figure: Curvilinear grids defined in polar coordinates
Sod shock tube problem - symmetry preservation

Figure: Density fields with 1st and 2nd order schemes on a 3rd mesh
Sod shock tube problem - symmetry preservation

Figure: 3rd order solution for a Sod shock tube problem on a 100×3 polar grid
Sod shock tube problem - symmetry preservation

Figure: 3rd order solution for a Sod shock tube problem on a 100 × 1 polar grid
Sod shock tube problem - symmetry preservation

Figure: 3rd order solution for a Sod shock tube problem on a 100×1 polar grid
Gresho-like vortex problem

Figure: Final deformed grids at time $t = 1$, on a 20×18 polar mesh
Gresho-like vortex problem

Figure: Final deformed grids at time $t = 1$, on a 20×18 polar mesh
Figure: Final deformed grids at time $t = 1$, on a 20×18 polar mesh.
Numerical results in 2D

Gresho-like vortex problem

Figure: Final deformed grids at time $t = 1$, on a 20×18 polar mesh
Gresho-like vortex problem

Figure: Velocity and pressure profiles at time $t = 1$, on a 20×18 polar grid
Gresho-like vortex problem

Figure: Density profiles at time $t = 1$, on a 20×18 polar grid
Kidder isentropic compression

Figure: Initial and final grids for a Kidder problem on a 10×5 polar mesh
Kidder isentropic compression

Figure: Interior and exterior shell radii evolution for a Kidder problem on a 10×5 polar mesh
Kidder isentropic compression

(i) Initial and final grids

(j) Shell radii evolution

Figure: 3rd order solution for a Kidder compression problem on a 10 × 3 polar grid
Numerical results in 2D

3rd order scheme

Accuracy and computational time for a Taylor-Green vortex

<table>
<thead>
<tr>
<th>D.O.F</th>
<th>N</th>
<th>$E^h_{L_1}$</th>
<th>$E^h_{L_2}$</th>
<th>$E^h_{L_\infty}$</th>
<th>time (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>600</td>
<td>24×25</td>
<td>2.67E-2</td>
<td>3.31E-2</td>
<td>8.55E-2</td>
<td>2.01</td>
</tr>
<tr>
<td>2400</td>
<td>48×50</td>
<td>1.36E-2</td>
<td>1.69E-2</td>
<td>4.37E-2</td>
<td>11.0</td>
</tr>
</tbody>
</table>

Table: 1st order scheme

<table>
<thead>
<tr>
<th>D.O.F</th>
<th>N</th>
<th>$E^h_{L_1}$</th>
<th>$E^h_{L_2}$</th>
<th>$E^h_{L_\infty}$</th>
<th>time (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>630</td>
<td>14×15</td>
<td>2.76E-3</td>
<td>3.33E-3</td>
<td>1.07E-2</td>
<td>2.77</td>
</tr>
<tr>
<td>2436</td>
<td>28×29</td>
<td>7.52E-4</td>
<td>9.02E-4</td>
<td>2.73E-3</td>
<td>11.3</td>
</tr>
</tbody>
</table>

Table: 2nd order scheme

<table>
<thead>
<tr>
<th>D.O.F</th>
<th>N</th>
<th>$E^h_{L_1}$</th>
<th>$E^h_{L_2}$</th>
<th>$E^h_{L_\infty}$</th>
<th>time (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>600</td>
<td>10×10</td>
<td>2.67E-4</td>
<td>3.36E-4</td>
<td>1.21E-3</td>
<td>4.00</td>
</tr>
<tr>
<td>2400</td>
<td>20×20</td>
<td>3.43E-5</td>
<td>4.36E-5</td>
<td>1.66E-4</td>
<td>30.6</td>
</tr>
</tbody>
</table>

Table: 3rd order scheme

Taylor-Green vortex

Figure: Final deformed grids at time $t = 0.6$, for 16 triangular cells meshes
Taylor-Green vortex

Figure: Final deformed grids at time $t = 0.6$, for 16 triangular cells meshes
Sod shock tube problem - symmetry preservation

Figure: 4th order solution for a Sod shock tube problem on a polar grid made of 308 triangular cells.
Numerical results in 2D
3rd order scheme

Sedov point blast problem - spurious deformations

Figure: Third-order solution at time $t = 1$ for a Sedov problem on a 30×30 Cartesian mesh.