Cell-centered discontinuous Galerkin scheme for Lagrangian hydrodynamics

F. Vilar1, P. H. Maire1, R. Abgrall2

1CEA CESTA, BP 2, 33 114 Le Barp, France

2INRIA and University of Bordeaux, Team Bacchus,
Institut de Mathématiques de Bordeaux,
351 Cours de la Libération, 33 405 Talence Cedex, France

September 2011
1 Introduction
 • Discontinuous Galerkin (DG)
 • Scalar conservation laws
 • 1D Lagrangian hydrodynamics

2 2D Lagrangian hydrodynamics
 • References
 • System and equations
 • Geometric consideration
 • 2nd order Deformation tensor
 • 2nd order DG scheme

3 Conclusion
• extension of finite volumes method
• polynomial approximation of the solution in the cells
• high order scheme, high precision

• local variational formulation
• choice of the numerical fluxes (global L^2 stability, entropic inequality)
• time discretization - TVD multistep Runge-Kutta

1 Introduction
- Discontinuous Galerkin (DG)
- Scalar conservation laws
- 1D Lagrangian hydrodynamics

2 2D Lagrangian hydrodynamics
- References
- System and equations
- Geometric consideration
- 2nd order Deformation tensor
- 2nd order DG scheme

3 Conclusion
comparison between the second order and the third order scheme with limitation

Figure: linear advection of a combination of smooth and discontinuous profiles
advection : solid body rotation

Burgers

numerical solutions using third order limited DG on a polygonal grid made of 2500 cells
rate of convergence with and without the slope limitation

<table>
<thead>
<tr>
<th>Linear advection</th>
<th>(L_1)</th>
<th>(L_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>first order</td>
<td>1.02</td>
<td>1.02</td>
</tr>
<tr>
<td>second order</td>
<td>1.99</td>
<td>1.98</td>
</tr>
<tr>
<td>second order lim</td>
<td>2.15</td>
<td>2.15</td>
</tr>
<tr>
<td>third order</td>
<td>2.98</td>
<td>2.98</td>
</tr>
<tr>
<td>third order lim</td>
<td>3.45</td>
<td>3.22</td>
</tr>
</tbody>
</table>

Table: for the smooth solution \(u_0(x) = \sin(2\pi x)\sin(2\pi y) \) on a \([0, 1]^2\) Cartesian grid
<table>
<thead>
<tr>
<th>Introduction</th>
<th>2D Lagrangian hydrodynamics</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discontinuous Galerkin (DG)</td>
<td>Scalar conservation laws</td>
<td>1D Lagrangian hydrodynamics</td>
</tr>
</tbody>
</table>

1. **Introduction**
 - Discontinuous Galerkin (DG)
 - Scalar conservation laws
 - **1D Lagrangian hydrodynamics**

2. **2D Lagrangian hydrodynamics**
 - References
 - System and equations
 - Geometric consideration
 - 2nd order Deformation tensor
 - 2nd order DG scheme

3. **Conclusion**
influence of the limitation on the linearized Riemann invariants

Figure: third order DG for the Sod shock tube problem using 100 cells: density
3rd order DG scheme with limitation: density

(a) Shu oscillating shock tube

(b) uniformly accelerated piston

rate of convergence with and without the slope limitation

<table>
<thead>
<tr>
<th></th>
<th>L_1</th>
<th>L_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>gas dynamics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>first order</td>
<td>0.80</td>
<td>0.73</td>
</tr>
<tr>
<td>second order</td>
<td>2.25</td>
<td>2.26</td>
</tr>
<tr>
<td>second order lim</td>
<td>2.04</td>
<td>2.21</td>
</tr>
<tr>
<td>third order</td>
<td>3.39</td>
<td>3.15</td>
</tr>
<tr>
<td>third order lim</td>
<td>2.75</td>
<td>2.72</td>
</tr>
</tbody>
</table>

Table: for a smooth solution in the special case $\gamma = 3$

Introduction
- Discontinuous Galerkin (DG)
- Scalar conservation laws
- 1D Lagrangian hydrodynamics

2D Lagrangian hydrodynamics
- References
- System and equations
- Geometric consideration
- 2nd order Deformation tensor
- 2nd order DG scheme

Conclusion

September 2011
François Vilar

Introduction
- Discontinuous Galerkin (DG)
- Scalar conservation laws
- 1D Lagrangian hydrodynamics

2D Lagrangian hydrodynamics
- References
- System and equations
 - Geometric consideration
 - 2nd order Deformation tensor
 - 2nd order DG scheme

Conclusion
gas dynamics system in Lagrangian formalism

\[
\begin{align*}
\rho^0 \frac{d}{dt} \left(\frac{1}{\rho} \right) - \nabla_X \cdot (JF^{-1} U) &= 0 \\
\rho^0 \frac{dU}{dt} + \nabla_X \cdot (JF^{-t} P) &= 0 \\
\rho^0 \frac{dE}{dt} + \nabla_X \cdot (JF^{-1} PU) &= 0
\end{align*}
\]

where \(X \) is the Lagrangian (initial) coordinate

\(F = \frac{\partial x}{\partial X} \) is called the deformation gradient tensor, where \(x \) is the Eulerian (actual) coordinate and \(J = \det(F) \)

using the trajectory equation \(\frac{dx}{dt} = U(x, t) \iff \frac{dF}{dt} = \nabla_X U \) (2)

Piola compatibility condition \(\nabla_X \cdot (JF^{-t}) = 0 \) (3)
1 Introduction
- Discontinuous Galerkin (DG)
- Scalar conservation laws
- 1D Lagrangian hydrodynamics

2 2D Lagrangian hydrodynamics
- References
- System and equations
- Geometric consideration
- 2nd order Deformation tensor
- 2nd order DG scheme

3 Conclusion
being given a mapping \(\mathbf{x} = \Phi(\mathbf{X}, t) \)

\[
F = \nabla_x \Phi
\]

developing \(\Phi \) on the basis functions \(\lambda_p \) in the cell \(\Omega_c \)

\[
\Phi_h^c(\mathbf{X}, t) = \Phi_h(\mathbf{X}, t)|_{\Omega_c} = \sum_p \lambda_p(\mathbf{X}) \Phi_p(t)
\]

where the \(p \) points are some control points

by setting \(G_c = (JF^{-t})_c \)

\[
\nabla_x \cdot G_c = \sum_p \left(\begin{array}{c} \Phi^y_p(\partial_{yX} \lambda_p - \partial_{yY} \lambda_p) \\ -\Phi^x_p(\partial_{yX} \lambda_p - \partial_{xY} \lambda_p) \end{array} \right) = 0
\]
using (4) and \[\frac{d}{dt} \Phi_p = U_p \implies \frac{d}{dt} F_c = \sum_p U_p \otimes \nabla x \lambda_p \] (5)

in 2D, \(F \rightarrow JF^{-t} = G \) is a linear function

\(JF^{-t}N \) represents the geometric normal in the Eulerian frame thanks to Nanson formula \(JF^{-t}N dS = GN dS = n ds \)

to ensure this quantity to be continuous, we discretize \(F \) by means of mapping defined on triangular cells \(T^c_i \) with \(i = 1 \ldots ntri \), using finite elements polynomial basis

using the fact \(\frac{d}{dt} F = \nabla x U \), \(F \) approximation order has to be one less than the one obtain with the DG scheme on \(\frac{1}{\rho} \), \(U \) and \(E \)
1 Introduction
- Discontinuous Galerkin (DG)
- Scalar conservation laws
- 1D Lagrangian hydrodynamics

2 2D Lagrangian hydrodynamics
- References
- System and equations
- Geometric consideration
- 2nd order Deformation tensor
- 2nd order DG scheme

3 Conclusion
- for the \(P_1 \) representation, the chosen finite elements polynomial basis in a general triangle \(T_c \) write

\[
\lambda_p(X) = \frac{1}{2|T_c|} [X(Y_{p+} - Y_{p-}) - Y(X_{p+} - X_{p-}) + X_{p+} Y_{p-} - X_{p-} Y_{p+}] \tag{6}
\]

- we can access to \(\nabla_X \lambda_p \) needed in (5)

\[
\nabla_X \lambda_p(X) = \frac{1}{2|T_c|} \left(\begin{array}{c} Y_{p+} - Y_{p-} \\ X_{p-} - X_{p+} \end{array} \right) = \frac{1}{|T_c|} L_{pc} N_{pc} \tag{7}
\]

where \(L_{pc} N_{pc} = L_{p-p} N_{p-p} + L_{pp+} N_{pp+} \)

\[
= - \frac{L_{p+p} N_{p+p}}{2}
\]
the equation (5) rewrites
\[
\frac{d}{dt} F_c = \frac{1}{|T_c|} \sum_{p \in \mathcal{P}(T_c)} U_p \otimes L_{pc} N_{pc} \tag{8}
\]

with this definition, GN continuity is well preserved at the interface be tween triangles

\[
G_c L_{pp^+} N_{pp^+} = \frac{1}{|T_c|} \sum_{p_t \in \mathcal{P}(T_c)} L_{ptc} L_{pp^+} \left(\Phi^Y_p (N^X_{pp^+} N^Y_{ptc} - N^Y_{pp^+} N^X_{ptc}) - \Phi^X_p (N^X_{pp^+} N^Y_{ptc} - N^Y_{pp^+} N^X_{ptc}) \right)
\]

\[
= \frac{1}{|T_c|} \sum_{p_t \in \mathcal{P}(T_c)} \left(L_{pp^+} T_{pp^+} \cdot L_{ptc} N_{ptc} \right) \left(\begin{array}{c} \Phi^Y_p \\ -\Phi^X_p \end{array} \right)
\]

\[
= \left(\begin{array}{c} \Phi^Y_{p^+} - \Phi^Y_p \\ \Phi^X_{p^+} - \Phi^X_p \end{array} \right) = \left(\begin{array}{c} y_{p^+} - y_p \\ x_{p^+} - x_p \end{array} \right) = l_{pp^+} n_{pp^+} \tag{9}
\]
1 Introduction
 - Discontinuous Galerkin (DG)
 - Scalar conservation laws
 - 1D Lagrangian hydrodynamics

2 2D Lagrangian hydrodynamics
 - References
 - System and equations
 - Geometric consideration
 - 2nd order Deformation tensor
 - 2nd order DG scheme

3 Conclusion
Discontinuous Galerkin

- \(\{ \sigma_k^c \}_{k=0}^{K} \) basis of \(\mathbb{P}^{\text{order}-1}(\Omega_c) \)
- \(\phi_h^c(X, t) = \sum_{k=0}^{K} \phi_k^c(t) \sigma_k^c(X) \) approximate of \(\phi(X, t) \) on \(\Omega_c \)
- Taylor basis, \(k_1 + k_2 = k \)

\[
\sigma_k^c = \frac{1}{k_1!k_2!} \left[\left(\frac{X - X_c}{\Delta X_c} \right)^{k_1} \left(\frac{Y - Y_c}{\Delta Y_c} \right)^{k_2} - \langle \left(\frac{X - X_c}{\Delta X_c} \right)^{k_1} \left(\frac{Y - Y_c}{\Delta Y_c} \right)^{k_2} \rangle \right]
\]

- for the second order scheme, \(K = 2 \)

\[
\sigma_0^c = 1, \quad \sigma_1^c = \frac{X - X_c}{\Delta X_c}, \quad \sigma_2^c = \frac{Y - Y_c}{\Delta Y_c}
\]

where \(\Delta X_c = \frac{X_{\text{max}} - X_{\text{min}}}{2} \) and \(\Delta Y_c = \frac{Y_{\text{max}} - Y_{\text{min}}}{2} \) with \(X_{\text{max}}, Y_{\text{max}}, X_{\text{min}}, Y_{\text{min}} \) the maximum and minimum coordinates in the cell \(\Omega_c \)
Density

- local variational formulation of (1a) on Ω_c

$$
\int_{\Omega_c} \rho^0 \frac{d}{dt} \left(\frac{1}{\rho} \right) \sigma_q d\Omega = \sum_{k=0}^{K} \frac{d}{dt} \left(\frac{1}{\rho} \right)_k \int_{\Omega_c} \rho^0 \sigma_q \sigma_k d\Omega
$$

$$
= \int_{\Omega_c} \sigma_q \nabla x \cdot (JF^{-1} U) d\Omega
$$

$$
= - \int_{\Omega_c} U \cdot JF^{-t} \nabla x \sigma_q d\Omega + \int_{\partial \Omega_c} \bar{U} \cdot \sigma_q JF^{-t} N dL
$$

- $G_i^c = (JF^{-t})_i^c$ is constant on T_i^c and $\nabla x \sigma_q$ over Ω_c

$$
\int_{\Omega_c} \rho^0 \frac{d}{dt} \left(\frac{1}{\rho} \right) \sigma_q d\Omega = - \sum_{i=1}^{ntri} G_i \nabla x \sigma_q \cdot \int_{T_i^c} UdT + \int_{\partial \Omega_c} \bar{U} \cdot \sigma_q G N dL
$$
\[\int_{\Omega_c} \rho^0 \frac{d}{dt} \left(\frac{1}{\rho} \right) \sigma_q d\Omega \simeq - \sum_{i=1}^{ntri} G_i^c \nabla x \sigma_q \cdot \int_{T_i^c} U d\mathcal{T} \]

\[+ \sum_{p \in P(\Omega_c)} U_p \cdot \int_{\partial \Omega_c \cap \partial \Omega_{pc}} \left\{ \sigma_q G \mathbf{N} dB \right\} \]

\[l_{pc}^q n_{pc}^q \]

Finally, the equation on the density leads to

\[\int_{\Omega_c} \rho^0 \frac{d}{dt} \left(\frac{1}{\rho} \right) \sigma_q d\Omega = - \sum_{i=1}^{ntri} G_i^c \nabla x \sigma_q \cdot \int_{T_i^c} U d\mathcal{T} + \sum_{p \in P(\Omega_c)} U_p \cdot l_{pc}^q n_{pc}^q \quad (10) \]

For the first order with \(l_{pc} n_{pc} = l_{pc}^0 n_{pc}^0 \)

\[m_c \frac{d}{dt} \left(\frac{1}{\rho} \right)_c = \int_{\Omega_c} \rho^0 \frac{d}{dt} \left(\frac{1}{\rho} \right) d\Omega = \sum_{p \in P(\Omega_c)} U_p \cdot l_{pc} n_{pc} \quad (11) \]
Velocity

local variational formulation of (1b) on Ω_c leads to

$$
\int_{\Omega_c} \rho^0 \frac{d\mathbf{U}}{dt} \sigma_q d\Omega = \sum_{i=1}^{ntri} G_i^c \nabla x \sigma_q \int_{T_i^c} P dT - \sum_{p \in \mathcal{P}(\Omega_c)} F_{pc}^q
$$

where $F_{pc}^q = \int_{\partial \Omega_c \cap \partial \Omega_{pc}} \mathcal{P} \sigma_q G N dL$

for the first order with $F_{pc} = F_{pc}^0$

$$
m_c \frac{d\mathbf{U}_c}{dt} = \int_{\Omega_c} \rho^0 \frac{d\mathbf{U}}{dt} d\Omega = - \sum_{p \in \mathcal{P}(\Omega_c)} F_{pc}
$$
Energy

- local variational formulation of (1c) on Ω_c

$$\int_{\Omega_c} \rho_0 \frac{dE}{dt} \sigma_q d\Omega = \sum_{i=1}^{ntri} G_i^c \nabla X \sigma_q \cdot \int_{T_i^c} P U d\Sigma - \sum_{p \in \mathcal{P}(\Omega_c)} \int_{\partial \Omega_c \cap \partial \Omega_{pc}} P U \cdot \sigma_q G N dL$$ \hspace{1cm} (14)

- we make the following fundamental assumption $P U = \overline{P U}$

- finally, the equation on the energy rewrites

$$\int_{\Omega_c} \rho_0 \frac{dE}{dt} \sigma_q d\Omega = \sum_{i=1}^{ntri} G_i^c \nabla X \sigma_q \cdot \int_{T_i^c} P U d\Sigma - \sum_{p \in \mathcal{P}(\Omega_c)} U_p \cdot F_{pc}^q$$ \hspace{1cm} (15)

- for the first order

$$m_c \frac{dE_c}{dt} = \int_{\Omega_c} \rho_0 \frac{dE}{dt} d\Omega = - \sum_{p \in \mathcal{P}(\Omega_c)} U_p \cdot F_{pc}$$ \hspace{1cm} (16)
The use of variational formulations and Gibbs formula leads to

\[\int_{\Omega_c} \rho^0 T \frac{dS}{dt} d\Omega = \int_{\partial\Omega_c} \left[\overline{P} \mathbf{U} + P \overline{U} - \overline{P} \mathbf{U} - P \mathbf{U} \right] \cdot \mathbf{G N dL} \]

\[= \sum_{f \in \mathcal{F}(\Omega_c)} \int_f (\overline{P} - P)(\mathbf{U} - \overline{U}) \cdot \mathbf{G N dL} \quad (17)\]

A sufficient condition to satisfy \(\int_{\Omega_c} \rho^0 T \frac{dS}{dt} d\Omega \geq 0\) consists in setting

\[\overline{P}(\mathbf{X}_f) = Pc(\mathbf{X}_f) - Z_c(\overline{U}(\mathbf{X}_f) - U_c(\mathbf{X}_f)) \cdot \frac{\mathbf{G N}}{\|\mathbf{G N}\|} \quad (18)\]

where \(\mathbf{X}_f\) is a point on the face \(f\) and \(Z_c\) a positive constant with a physical dimension of a density times a velocity.
using this expression to calculate F^q_{pc} leads to

\[
F^q_{pc} = \int_{\partial \Omega_c \cap \partial \Omega_{pc}} \overline{P} \sigma_q JF^{-t} N dL
\]

\[
= \int_{\partial \Omega_c \cap \partial \Omega_{pc}} P_c \sigma_q G N dL - \int_{\partial \Omega_c \cap \partial \Omega_{pc}} Z_c (\overline{U} - U_c) \cdot \frac{G N}{\|G N\|} \sigma_q G N dL
\]

\[
\simeq P_c(p) \int_{\partial \Omega_c \cap \partial \Omega_{pc}} \sigma_q G N dL
\]

\[
- \int_{\partial \Omega_c \cap \partial \Omega_{pc}} Z_c (U_p - U_c(p)) \cdot \frac{G N}{\|G N\|} \sigma_q G N dL
\]

finally, F^q_{pc} writes

\[
F^q_{pc} = P_c(p) I^q_{pc} n^q_{pc} - M^q_{pc} (U_p - U_c(p))
\]
\[M_{pc}^q \] are defined as \[M_{pc}^q = Z_c \int_{\partial \Omega_c \cap \partial \Omega_{pc}} \frac{G_N}{||G_N||} \otimes G_N \sigma_q dL \]

\[= Z_c (l_{pc}^{q,+} n_{pc}^+ \otimes n_{pc}^+ + l_{pc}^{q,-} n_{pc}^- \otimes n_{pc}^-) \]

where \[l_{pc}^{q,\pm} = \int_{\partial \Omega_c \cap \partial \Omega_{pc}^\pm} \sigma_q dL \]

\[M_{pc}^0 = M_{pc} = Z_c (l_{pc}^{+,} n_{pc}^+ \otimes n_{pc}^+ + l_{pc}^{-} n_{pc}^- \otimes n_{pc}^-) \] is semi definite positive matrix with a physical dimension of a density times a velocity

to be conservative in total energy over the whole domain,

\[\sum_{c \in C(p)} F_{pc} = 0 \] and consequently

\[(\sum_{c \in C(p)} M_{pc}) U_p = \sum_{c \in C(p)} [P_c(p) l_{pc} n_{pc} + M_{pc} U_c(p)] \quad (20) \]
Sod shock tube problem on a polar grid made of 500 cells: density map with limitation
expansion wave into vacuum problem on a polar grid made of 250 cells: internal energy map with limitation
Noh problem on a Cartesian grid made of 2500 cells: density map
Sedov problem on a Cartesian grid made of 900 cells and a polygonal one made of 775 cells: density map with limitation
initial grid

actual grid

Gresho problem on a polar grid made of 720 cells: pressure map with limitation
discontinuous Galerkin

discontinuous Galerkin limited

Taylor-Green vortex problem on a cartesian grid made of 400 cells: pressure map without limitation at t=0.75s
Table: rate of convergence computed for second order DG scheme

<table>
<thead>
<tr>
<th>h</th>
<th>$q_h^{L_2}$</th>
<th>$q_h^{L_\infty}$</th>
<th>$q_h^{L_2}$</th>
<th>$q_h^{L_\infty}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{1}{20}$</td>
<td>1.74</td>
<td>1.35</td>
<td>2.05</td>
<td>1.54</td>
</tr>
<tr>
<td>$\frac{1}{40}$</td>
<td>1.85</td>
<td>1.85</td>
<td>2.11</td>
<td>1.81</td>
</tr>
<tr>
<td>$\frac{1}{80}$</td>
<td>1.42</td>
<td>2.34</td>
<td>1.58</td>
<td>1.54</td>
</tr>
</tbody>
</table>

Table: numerical errors computed at t=0.6s on the pressure

<table>
<thead>
<tr>
<th>h</th>
<th>$E_h^{L_2}$</th>
<th>$E_h^{L_\infty}$</th>
<th>$E_h^{L_2}$</th>
<th>$E_h^{L_\infty}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{1}{20}$</td>
<td>1.854E-2</td>
<td>6.596E-2</td>
<td>1.120E-2</td>
<td>3.678E-2</td>
</tr>
<tr>
<td>$\frac{1}{40}$</td>
<td>6.500E-3</td>
<td>2.452E-2</td>
<td>3.356E-3</td>
<td>1.446E-2</td>
</tr>
<tr>
<td>$\frac{1}{80}$</td>
<td>1.817E-3</td>
<td>9.122E-3</td>
<td>9.314E-4</td>
<td>4.019E-3</td>
</tr>
<tr>
<td>$\frac{1}{160}$</td>
<td>4.944E-4</td>
<td>2.555E-3</td>
<td>3.471E-4</td>
<td>7.959E-4</td>
</tr>
</tbody>
</table>

Table: numerical errors computed at t=0.6s on the pressure
1 Introduction
 - Discontinuous Galerkin (DG)
 - Scalar conservation laws
 - 1D Lagrangian hydrodynamics

2 2D Lagrangian hydrodynamics
 - References
 - System and equations
 - Geometric consideration
 - 2nd order Deformation tensor
 - 2nd order DG scheme

3 Conclusion
Conclusions

- DG schemes up to 3rd order
 - linear and non-linear scalar conservation laws in 1D and 2D on general unstructured grids
 - 1D gas dynamics system in Lagrangian formalism
- DG scheme up to 2nd order for the 2D gas dynamics system in Lagrangian formalism with particular geometric consideration
- numerical flux studies
- Riemann invariants limitation

Prospects

- 3rd order DG scheme for the 2D gas dynamics system in Lagrangian formalism
- validation
- extension to ALE