Positivity-preserving cell-centered Lagrangian schemes

F. Vilar, P.-H. Maire and C.-W. Shu

Brown University, Division of Applied Mathematics
182 George Street, Providence, RI 02912

July 21st, 2014
1. **Cell-Centered Lagrangian schemes**
2. **Lagrangian and Eulerian descriptions**
3. **Compatible first-order positivity-preserving discretization**
4. **High-order positivity-preserving extension**
5. **CCDG numerical results**
6. **Conclusion**
1. Cell-Centered Lagrangian schemes

2. Lagrangian and Eulerian descriptions

3. Compatible first-order positivity-preserving discretization

4. High-order positivity-preserving extension

5. CCDG numerical results

6. Conclusion
Finite volume schemes on moving mesh
- J. K. Dukowicz: CAVEAT scheme, 1986
- B. Després: GLACE scheme, 2005
- G. Kluth: Cell-centered Lagrangian scheme for the hyperelasticity, 2010
- S. Del Pino: Curvilinear finite-volume Lagrangian scheme, 2010
- P. Hoch: Finite volume method on unstructured conical meshes, 2011

DG scheme on initial mesh
- R. Loubère: DG scheme for Lagrangian hydrodynamics, 2004
- Z. Jia: DG spectral finite element for Lagrangian hydrodynamics, 2010
<table>
<thead>
<tr>
<th>CCLS</th>
<th>Descriptions</th>
<th>1st order</th>
<th>High-order</th>
<th>CCDG numerical results</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Flow transformation</td>
<td>Governing equations</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Cell-Centered Lagrangian schemes

2. Lagrangian and Eulerian descriptions

3. Compatible first-order positivity-preserving discretization

4. High-order positivity-preserving extension

5. CCDG numerical results

6. Conclusion
Flow transformation of the fluid

- The fluid flow is described mathematically by the continuous transformation, \(\Phi \), so-called mapping such as \(\Phi : X \longrightarrow x = \Phi(X, t) \)

![Flow map diagram](image)

Figure: Notation for the flow map.

where \(X \) is the Lagrangian (initial) coordinate, \(x \) the Eulerian (actual) coordinate, \(N \) the Lagrangian normal and \(n \) the Eulerian normal.

Deformation Jacobian matrix: deformation gradient tensor

- \(F = \nabla_X \Phi = \frac{\partial x}{\partial X} \) and \(J = \det F > 0 \)
Trajectory equation

\[\frac{d \mathbf{x}}{dt} = \mathbf{U}(\mathbf{x}, t), \quad \mathbf{x}(\mathbf{X}, 0) = \mathbf{X} \]

Material time derivative

\[\frac{d}{dt} f(\mathbf{x}, t) = \frac{\partial}{\partial t} f(\mathbf{x}, t) + \mathbf{U} \cdot \nabla_{\mathbf{x}} f(\mathbf{x}, t) \]

Transformation formulas

- \(\text{FdX} = \mathbf{dX} \)
- \(\rho^0 = \rho J \)
- \(JdV = dV \)
- \(JF^{-1} \mathbf{N} dS = \mathbf{n} ds \)

Differential operators transformations

- \(\nabla_{\mathbf{x}} P = \frac{1}{J} \nabla_{\mathbf{x}} \cdot (P JF^{-1}) \)
- \(\nabla_{\mathbf{x}} \cdot \mathbf{U} = \frac{1}{J} \nabla_{\mathbf{x}} \cdot (JF^{-1} \mathbf{U}) \)
Piola compatibility condition

\[\nabla_x (JF^{-t}) = 0 \quad \Rightarrow \quad \int_{\Omega} \nabla_x (JF^{-t}) \, dV = \int_{\partial \Omega} JF^{-t} N \, dS = \int_{\partial \omega} n \, ds = 0 \]

Deformation gradient tensor

\[\frac{dF}{dt} - \nabla_x U = 0 \]

Actual configuration

\[\rho \frac{d}{dt} \left(\frac{1}{\rho} \right) - \nabla_x U = 0 \]

\[\rho \frac{dU}{dt} + \nabla_x P = 0 \]

\[\rho \frac{de}{dt} + \nabla_x (PU) = 0 \]

Initial configuration

\[\rho^0 \frac{d}{dt} \left(\frac{1}{\rho} \right) - \nabla_x (JF^{-1} U) = 0 \]

\[\rho^0 \frac{dU}{dt} + \nabla_x (P JF^{-t}) = 0 \]

\[\rho^0 \frac{de}{dt} + \nabla_x (JF^{-1} PU) = 0 \]

Specific internal energy

\[\varepsilon = e - \frac{1}{2} U^2 \]
Ideal EOS for the perfect gas

- \(P = \rho (\gamma - 1) \varepsilon \) where \(a = \sqrt{\frac{\gamma P}{\rho}} \)
- If \(\rho > 0 \) then \(\varepsilon > 0 \iff a^2 > 0 \iff P > 0 \)

Stiffened EOS for water

- \(P = \rho (\gamma - 1) \varepsilon - \gamma P^* \) where \(a = \sqrt{\frac{\gamma (P + P^*)}{\rho}} \)
- If \(\rho > 0 \) then \(\rho \varepsilon > P^* \iff a^2 > 0 \iff P > -P^* \)

Jones-Wilkins-Lee (JWL) EOS for the detonation-products gas

- \(P = \rho (\gamma - 1) \varepsilon + f(\rho) \) where \(a = \sqrt{\frac{\gamma P - f(\rho) + \rho f'(\rho)}{\rho}} \)
- If \(\rho > 0 \) then \(\varepsilon > 0 \implies a^2 > 0 \iff P > f(\rho) \geq 0 \)
1. Cell-Centered Lagrangian schemes

2. Lagrangian and Eulerian descriptions

3. Compatible first-order positivity-preserving discretization

4. High-order positivity-preserving extension

5. CCDG numerical results

6. Conclusion
Mass averaged values equations

- \(m_c \left(\frac{1}{\rho} \right)_c^{n+1} = m_c \left(\frac{1}{\rho} \right)_c^n + \Delta t \sum_{p \in Q(\partial \omega_c)} U_p^n \cdot l_{pc}^n n_{pc}^n \)
- \(m_c U_c^{n+1} = m_c U_c^n - \Delta t \sum_{p \in Q(\partial \omega_c)} F_{pc}^n \)
- \(m_c e_c^{n+1} = m_c e_c^n - \Delta t \sum_{p \in Q(\partial \omega_c)} U_p^n \cdot F_{pc}^n \)

Definitions

- \(\psi_c = \frac{1}{m_c} \int_{\Omega_c} \rho^0 \psi \, dV = \frac{1}{m_c} \int_{\omega_c} \rho \psi \, dV \) mean value
- \(F_{pc} = P_c l_{pc} n_{pc} - M_{pc} (U_p - U_c) \) subcell forces

Momentum and total energy conservation

- \[\sum_{c \in C(p)} F_{pc} = 0 \quad \Rightarrow \quad (\sum_{c \in C(p)} M_{pc}) U_p = \sum_{c \in C(p)} (P_c l_{pc} n_{pc} + M_{pc} U_c) \]
GLACE assumptions

\(a) \ Q(\partial \omega_c) = \mathcal{P}(\omega_c) \) the node set

\(b) \ l_{pc}n_{pc} = l_{pc}n_{pc}^- + l_{pc}n_{pc}^+ = \frac{1}{2} l_{p^-}n_{p^-} + \frac{1}{2} l_{pp^+}n_{pp^+} \)

\(c) \ M_{pc} = Z_{pc} l_{pc}n_{pc} \otimes n_{pc} \)

\(d) \ U_p = (\sum_{c \in C(p)} M_{pc})^{-1} \sum_{c \in C(p)} (P_c l_{pc}n_{pc} + M_{pc} U_c) \)

EUCCLHYD assumptions

- Same assumptions \(a), b) and d) as GLACE

\(c) \ M_{pc} = Z_{pc} l_{pc}n_{pc}^- \otimes n_{pc}^- + Z_{pc} l_{pc}n_{pc}^+ \otimes n_{pc}^+ \)
Cell-centered DG (CCDG) assumptions

a) $Q(\partial \omega_c) = \bigcup_{p \in \mathcal{P}(\omega_c)} (Q(pp^+) \setminus \{p^+\})$

b) For $q \in Q(pp^+)$,

$$l_q n_{q|pp} = \int_0^1 \lambda_q(\zeta) \sum_{k \in Q(pp^+)} \frac{\partial \lambda_k}{\partial \zeta} (x_k \times e_z) \ d\zeta$$

For $p \in \mathcal{P}(\omega_c)$,

$$l_{pc} n_{pc} = l_p n_{p|p-} + l_p n_{p|pp+}$$

For $q \in Q(pp^+) \setminus \{p, p^+\}$,

$$l_{qc} n_{qc} = l_q n_{q|pp+}$$
CCDG assumptions

c) For $p \in \mathcal{P}(\omega_c)$,
$$M_{pc} = Z_{pc}^{-} l_{pc}^{-} n_{pc}^{-} \otimes n_{pc}^{-} + Z_{pc}^{+} l_{pc}^{+} n_{pc}^{+} \otimes n_{pc}^{+}$$

For $q \in \mathcal{Q}(pp^{+}) \setminus \{p, p^{+}\}$,
$$M_{pc} = Z_{pc} l_{pc} n_{pc} \otimes n_{pc}$$

d) For $p \in \mathcal{P}(\omega_c)$,
$$U_p = \left(\sum_{c \in \mathcal{C}(p)} M_{pc} \right)^{-1} \sum_{c \in \mathcal{C}(p)} \left(P_c l_{pc} n_{pc} + M_{pc} U_c \right)$$

For $q \in \mathcal{Q}(pp^{+}) \setminus \{p, p^{+}\}$,
$$U_p = \frac{Z_{pL} U_L + Z_{pR} U_R}{Z_{pL} + Z_{pR}} - \frac{P_R - P_L}{Z_{pL} + Z_{pR}} n_{pL}$$
CFL condition

- **System eigenvalues:** \(-a, 0, a\)

\[
\forall c, \quad \Delta t \leq C_e \frac{v_c^n}{a_c L_c}
\]

Volume control

- **Relative volume variation:**

\[
\frac{|v_c^{n+1} - v_c^n|}{v_c^n} \leq C_v
\]

\[
\forall c, \quad \Delta t \leq C_v \frac{v_c^n}{\sum_{p \in Q(\partial \omega_c)} |\sum_{l_p \in n_{pc}} U_p^n \cdot l_p^n n_{pc}^n|}
\]
Solution vector

- \(W = (\frac{1}{\rho}, U, e)^t \)

Admissible convex set

- \(G = \{ W, \rho > 0, \varepsilon = e - \frac{1}{2}U^2 > 0 \} \) for ideal and JWL EOS
- \(G = \{ W, \rho > 0, \varepsilon = e - \frac{1}{2}U^2 > \frac{P^*}{\rho} \} \) for stiffened EOS

First-order positivity-preserving scheme

- If \(W^n_c = ((\frac{1}{\rho})^n_c, U^n_c, e^n_c)^t \in G \), then under which constraint \(W^{n+1}_c \in G \)?

Positive density

- If \((\frac{1}{\rho})^n_c > 0 \) then \((\frac{1}{\rho})^{n+1}_c > 0 \iff (\frac{1}{\rho})^n_c > -\frac{\Delta t}{m_c} \sum_{\rho \in Q(\partial \omega_c)} U^n_p \cdot l^n_{pc} n^n_{pc} \)
- Thus if \(C_v < 1 \) then \((\frac{1}{\rho})^n_c = \frac{v^n_c}{m_c} > 0 \iff (\frac{1}{\rho})^{n+1}_c = \frac{v^{n+1}_c}{m_c} > 0 \)
Positive internal energy

\[\varepsilon_c = e_c - \frac{1}{2}(U_c)^2 \]
\[\varepsilon_{c}^{n+1} = \varepsilon_{c}^{n} - \frac{\Delta t}{m_c} \left(\sum_p U^n_p \cdot F^n_{pc} - \sum_p U^n_c \cdot F^n_{pc} + \frac{\Delta t}{2m_c} \left(\sum_p F^n_{pc} \right)^2 \right) \]

Properties

\[F_{pc} = P_c \ l_{pc} \ n_{pc} - M_{pc}(U_p - U_c) \]
\[\sum_{p \in Q(\partial \omega_c)} l_{pc} n_{pc} = \sum_{p \in P(\omega_c)} l_{pp^+} n_{pp^+} = 0 \]

Definitions

\[\lambda_c = \frac{\Delta t}{m_c} \]
\[V_p = U^n_p - U^n_c \]
CCLS Descriptions
1st order
High-order
CCDG numerical results
Conclusion
Schemes
Time step constraint
Positivity
Stability

Definitions

- $\varepsilon_{c}^{n+1} = A_c + \lambda_c B_c$
- $A_c = \varepsilon_{c}^{n} - \frac{P_{c}^{n}}{\rho_{c}^{n}} \frac{V_{c}^{n+1} - V_{c}^{n}}{V_{c}^{n}}$
- $B_c = \sum_{p} M_{pc} \mathbf{V}_p \cdot \mathbf{V}_p - \frac{\lambda_c}{2} (\sum_{p} M_{pc} \mathbf{V}_p)^2$

$A_c > 0$ for ideal and JWL EOS

- If $B_c \geq 0$ then $A_c > 0 \implies \varepsilon_{c}^{n+1} > 0$
- As $\rho_{c}^{n} > 0$ and $\varepsilon_{c}^{n} > 0$ then $A_c > \varepsilon_{c}^{n} - \frac{P_{c}^{n}}{\rho_{c}^{n}} C_v$

Thus $C_v < \frac{\rho_{c}^{n} \varepsilon_{c}^{n}}{P_{c}^{n}} = \left\{ \begin{array}{ll} 1 & \text{for ideal gas} \\ \frac{1}{\gamma - 1} & \text{for JWL gas} \\ \gamma - 1 + \frac{f(\rho_{c}^{n})}{\rho_{c}^{n} \varepsilon_{c}^{n}} & \end{array} \right.$

$\implies A_c > 0$
\(A_c > \frac{P^*}{\rho_c^{n+1}} \) for stiffened EOS

- If \(B_c \geq 0 \) then \(A_c > \frac{P^*}{\rho_c^{n+1}} \implies \varepsilon_c^{n+1} > \frac{P^*}{\rho_c^{n+1}} \)

- \(A_c = (\varepsilon_c^n - \frac{P^*}{\rho_c^n}) (1 - (\gamma - 1) \frac{v_c^{n+1} - v_c^n}{v_c^n}) + \frac{P^*}{\rho_c^{n+1}} \)

- Since \(\varepsilon_c^n - \frac{P^*}{\rho_c^n} > 0 \) then \(A_c > (\varepsilon_c^n - \frac{P^*}{\rho_c^n}) (1 - (\gamma - 1) C_v) + \frac{P^*}{\rho_c^{n+1}} \)

- Thus \(C_v < \frac{1}{\gamma - 1} \implies A_c > \frac{P^*}{\rho_c^{n+1}} \)

Discrete entropy inequality

\[
\lambda_c B_c = \varepsilon_c^{n+1} - A_c = \varepsilon_c^{n+1} - \varepsilon_c^n + P_c^n \left(\left(\frac{1}{\rho} \right)_c^{n+1} - \left(\frac{1}{\rho} \right)_c^n \right)
\]

Entropy

\[
T dS = d\varepsilon + P d\left(\frac{1}{\rho} \right) \geq 0 \quad \text{Gibbs identity + second law of thermodynamics}
\]
\(B_c \geq 0 \)

- \(B_c = \sum_{p \in Q(\partial \omega_c)} M_{pc} \mathbf{V}_p \cdot \mathbf{V}_p - \frac{\lambda_c}{2} \left(\sum_{p \in Q(\partial \omega_c)} M_{pc} \mathbf{V}_p \right)^2 \)

- \(M_{pc} = \sum_{n=1}^{N_p} Z_{pn} l_{pn} \mathbf{n}_{pn} \otimes \mathbf{n}_{pn} \)

- \(\sum_{p \in Q(\partial \omega_c)} M_{pc} \mathbf{V}_p \cdot \mathbf{V}_p = \sum_{p \in Q(\partial \omega_c)} \sum_{n=1}^{N_p} Z_{pn} l_{pn} (\mathbf{V}_p \cdot \mathbf{n}_{pn})^2 = \sum_{p \in Q(\partial \omega_c)} \sum_{n=1}^{N_p} Z_{pn} l_{pn} X_{pn}^2 \)

- Re-numbering: \(\sum_{p \in Q(\partial \omega_c)} \sum_{n=1}^{N_p} \psi_{pn} = \sum_{i=1}^{N_c} \psi_i \)

- \(B_c = \sum_{i=1}^{N_c} Z_i l_i X_i^2 - \frac{\lambda_c}{2} \sum_{i,j=1}^{N_c} Z_i Z_j l_i l_j X_i X_j (\mathbf{n}_i \cdot \mathbf{n}_j) = \mathbf{H} \mathbf{X} \cdot \mathbf{X} \)

where \(\mathbf{X} = (X_1, \ldots, X_{N_c})^t \) and \(H_{ij} = \begin{cases}
Z_i l_i (1 - \frac{\lambda_c}{2} Z_i l_i), & \text{if } i = j, \\
- \frac{\lambda_c}{2} Z_i Z_j l_i l_j (\mathbf{n}_i \cdot \mathbf{n}_j), & \text{if } i \neq j.
\end{cases} \)
Theorem

- If H is symmetric diagonally dominant with non-negative diagonal entries then H is positive semi-definite (thanks to Gerschgorin theorem)

$B_c \geq 0$

1. If $\lambda_c \leq \frac{2}{Z_i l_i}$ then $H_{ii} \geq 0$
2. If $\lambda_c \leq \frac{2}{\sum_j Z_j l_j |n_i \cdot n_j|}$ then $|H_{ii}| - \sum_{j \neq i} |H_{ij}| \geq 0$

Thus if $\lambda_c \leq \frac{2}{\sum_j Z_j l_j} \iff \Delta t \leq \frac{m_c}{\frac{1}{2} \sum_j Z_j l_j}$ then $B_c \geq 0$

Acoustic impedance $Z_c = \rho_c a_c$

- If $\Delta t \leq \frac{v^n_c}{a_c L_c}$ where $L_c = \frac{1}{2} \sum_j l_j$ then $B_c \geq 0$
Finally, for the first-order finite volume cell-centered Lagrangian schemes, if

1. $W^n_c \in G$

2. $\Delta t \leq C_v \frac{v^n_c}{\sum_{p \in Q(\partial \omega_c)} |U^n_p \cdot l^n_{pc} n^n_{pc}|}$, with $C_v < \min \left(1, \frac{1}{\gamma - 1 + \frac{f(\rho^n_c)}{\rho^n_c \varepsilon^n_c}} \right)$

3. $\Delta t \leq \frac{v^n_c}{a_c L_c}$, with $L_c = \begin{cases} \frac{1}{2} \sum_{p \in P(\omega_c)} l_{pc}, & \text{GLACE} \\ \frac{1}{2} \sum_{p \in P(\omega_c)} l_{pp}, & \text{EUCCLHYD} \\ \frac{1}{2} \sum_{p \in P(\omega_c)} \sum_{q \in Q(pp^+)} l_{q|pp^+}. & \text{CCDG} \end{cases}$

Then $W^{n+1}_c \in G$ and $\varepsilon^{n+1}_c - \varepsilon^n_c + P^n_c \left((1/\rho)_c^{n+1} - (1/\rho)_c^n\right) \geq 0$
Norm definitions

- $\|\psi\|_{L_1} = \int_{\Omega} \rho^0 |\psi| \, dV = \int_{\omega} \rho |\psi| \, dv$

- $\|\psi\|_{L_2} = \left(\int_{\Omega} \rho^0 \psi^2 \, dV \right)^{\frac{1}{2}} = \left(\int_{\omega} \rho \psi^2 \, dv \right)^{\frac{1}{2}}$

Stability analysis

For sake of simplicity periodic boundary conditions (PBC) are considered.

ψ_h^n is the piecewise constant numerical solution such as $\psi_h^n|_{\omega_c} = \psi_c^n$

We assume the initial solution vector $W_c^0 = ((\frac{1}{\rho})_c^0, \mathbf{U}_c^0, e_c^0)^t$ on cell ω_c is computed through

$$W_c^0 = \frac{1}{m_c} \int_{\Omega_c} \rho^0(\mathbf{X}) \, W^0(\mathbf{X}) \, dV,$$

where $W^0 = (\frac{1}{\rho^0}, \mathbf{U}^0, e^0)^t$ and $\frac{1}{\rho^0}, \mathbf{U}^0, e^0$ respectively are the initial specific volume, velocity and total energy.
Specific volume

- Positivity $|\left(\frac{1}{\rho}\right)_c^n| = \left(\frac{1}{\rho}\right)_c^n$

- Conservation $\sum_c m_c \left(\frac{1}{\rho}\right)_c^n = \sum_c m_c \left(\frac{1}{\rho}\right)_c^{n-1}$ (since PBC + $\sum_{c \in C(p)} l_{pc} n_{pc} = 0$)

$$\|\left(\frac{1}{\rho}\right)_h^n\|_{L_1} = \sum_c m_c |\left(\frac{1}{\rho}\right)_c^n| = \sum_c m_c |\left(\frac{1}{\rho}\right)_c^{n-1}| = \|\left(\frac{1}{\rho}\right)_h^{n-1}\|_{L_1}$$

Total energy

- Positivity $|e^n_c| = e^n_c$ (since $\varepsilon^n_c > 0 \iff e^n_c > \frac{1}{2} (U^n_c)^2 \geq 0$)

- Conservation $\sum_c m_c e^n_c = \sum_c m_c e^{n-1}_c$ (since PBC + $\sum_{c \in C(p)} F_{pc} = 0$)

$$\|e_h^n\|_{L_1} = \sum_c m_c |e^n_c| = \sum_c m_c |e^{n-1}_c| = \|e_h^{n-1}\|_{L_1}$$
Kinetic energy and velocity

- \(K = \frac{1}{2} \mathbf{U}^2 \) specific kinetic energy

- \(\frac{1}{2} (\mathbf{U}_c^n)^2 < e_c^n \quad \Rightarrow \quad \frac{1}{2} \sum_c m_c (\mathbf{U}_c^n)^2 < \sum_c m_c e_c^n \)

- \(2m_c e_c^n = 2\sqrt{m_c} \sqrt{m_c (e_c^n)^2} \leq m_c + m_c (e_c^n)^2 \)

- \(\sum_c m_c (\mathbf{U}_c^n)^2 < \sum_c m_c + \sum_c m_c (e_c^n)^2 \)

Stability

- \(\| (\frac{1}{\rho})^n_h \|_{L_1} = \| \frac{1}{\rho^0} \|_{L_1} \)

- \(\| e_h^n \|_{L_1} = \| e^0 \|_{L_1} \)

- \(\| K_h^n \|_{L_1} < \| e_h^n \|_{L_1} \)

- \(\| U_h^n \|_{L_2}^2 < m_\omega + \| e_h^n \|_{L_2}^2 \)
1. Cell-Centered Lagrangian schemes
2. Lagrangian and Eulerian descriptions
3. Compatible first-order positivity-preserving discretization
4. High-order positivity-preserving extension
5. CCDG numerical results
6. Conclusion

July 21st, 2014
François Vilar

Positivity-preserving cell-centered scheme
Control point solvers

In the control point solvers, F_{pc} and U_p, the interpolation values at point p of the high-order approximations of the pressure and velocity, $P_c^h(p)$ and $U_c^h(p)$, are used instead of the mean values P_c and U_c.

High-order extension

1. Piecewise linear approximations of the pressure and velocity, $P_h(p)$ and $U_h(p)$, are constructed using the mean values, P_c and U_c, over the cells (GLACE and EUCCLHYD).

2. A piecewise polynomial reconstruction of the solution vector $W_h(x) = (\left(\frac{1}{\rho}\right)_h(x), U_h(x), e_h(x))^t$ is assumed, such as its mass averaged value over cell ω_c corresponds to W_c (CCDG).

The pressure is pointwisely defined through the EOS, such as

$$P_h(x) = \rho_h(x) (\gamma - 1) (e_h(x) - \frac{1}{2}(U_h(x)^2)) + f(\rho_h(x)) - \gamma P^*$$
Quadrature rule over triangles

- Exact for polynomials up to degree $2(d - 1)$
- containing the cell boundary control points, i.e., $Q(\partial \Omega_c) \subset \bigcup_{i=1}^{ntri} R_{i,c}$
- With positive weights, i.e., $\forall q \in R_{i,c}, w_q \geq 0$

GLACE and EUCCLHYD schemes

- $\psi_c = \frac{1}{m_c} \int_{\omega_c} \rho_c \psi_h^c \, dv = \frac{1}{m_c} \sum_{i=1}^{ntri} |\tau_i^c| \sum_{q \in R_{i,c}} w_q \rho_c \psi_h^c(q)$
- $m_q^c = \sum_{i,R_{i,c} \ni q} |\tau_i^c| w_q \rho_c$

CCDG scheme

- $\psi_c = \frac{1}{m_c} \int_{\Omega_c} \rho^0 \psi_h^c \, dV = \frac{1}{m_c} \sum_{i=1}^{ntri} |\tau_i^c| \sum_{q \in R_{i,c}} w_q \rho^0(q) \psi_h^c(q)$
- $m_q^c = \sum_{i,R_{i,c} \ni q} |\tau_i^c| w_q \rho^0(q)$
Properties

- \(\mathcal{R}_c = \bigcup_{i=1}^{ntri} \mathcal{R}_{i,c} \)

- \(m_c = \int_{\Omega_c} \rho^0 \, dV = \rho_c \int_{\omega_c} \, d\nu = \sum_{q \in \mathcal{R}_c} m_q \)

- \(\psi_c = \frac{1}{m_c} \sum_{q \in \mathcal{R}_c} m_q \psi_q^c(q) \)

- \(m_c^* = m_c - \sum_{p \in \mathcal{Q}(\partial \omega_c)} m_p \)

- \(\psi_q^c = \frac{1}{m_c^*} \sum_{q \in \mathcal{R}_c \setminus \mathcal{Q}(\partial \omega_c)} m_q \psi_q^c(q) \)

- \(\psi_c = \frac{m_c^*}{m_c} \psi_q^c + \frac{1}{m_c} \sum_{p \in \mathcal{Q}(\partial \omega_c)} m_p \psi_p^c(p) \)
Mass averaged value equations

\[m_c \left(\frac{1}{\rho} \right)_c^{n+1} = m_c \left(\frac{1}{\rho} \right)_c^n + \Delta t \sum_{p \in Q(\partial \omega_c)} U_p^n \cdot l_{pc}^n n_{pc}^n \]

\[m_c U_c^{n+1} = m_c U_c^n - \Delta t \sum_{p \in Q(\partial \omega_c)} F_{pc}^n \]

\[m_c e_c^{n+1} = m_c e_c^n - \Delta t \sum_{p \in Q(\partial \omega_c)} U_p^n \cdot F_{pc}^n \]

Decomposition

\[\left(\frac{1}{\rho} \right)_c^{n+1} = \frac{m_c}{m_c^*} \left(\frac{1}{\rho} \right)_c^* + \frac{1}{m_c} \sum_{p \in Q(\partial \omega_c)} m_p^c \left(\frac{1}{\rho} \right)_h(p) + \frac{\Delta t}{m_p^c} U_p^n \cdot l_{pc}^n n_{pc}^n \]

\[U_c^{n+1} = \frac{m_c^*}{m_c} U_c^* + \frac{1}{m_c} \sum_{p \in Q(\partial \omega_c)} m_p^c \left(U_h^c(p) - \frac{\Delta t}{m_p^c} F_{pc}^n \right) \]

\[e_c^{n+1} = \frac{m_c^*}{m_c} e_c^* + \frac{1}{m_c} \sum_{p \in Q(\partial \omega_c)} m_p^c \left(e_h^c(p) - \frac{\Delta t}{m_p^c} U_p^n \cdot F_{pc}^n \right) \]
Procedure

- Express these equations as a convex combination of first-order schemes

Specific volume

\[
\sum_{p \in Q(\partial \omega)} l_{pc} n_{pc} = 0 \iff l_{pc} n_{pc} = - \sum_{q \in Q(\partial \omega) \setminus p} l_{qc} n_{qc}
\]

\[
h^\rho_p = (\frac{1}{\rho})^c_h(p) + \frac{\Delta t}{m_p^c} U^n_p \cdot l^n_{pc} n^n_{pc}
\]

\[
H^\rho_p = (\frac{1}{\rho})^c_h(p) + \frac{\Delta t}{m_p^c} (U^n_p - V_c) \cdot l^n_{pc} n^n_{pc} = (\frac{1}{\rho})^c_h(p) + \frac{\Delta t}{m_p^c} \sum_{q \in Q(\partial \omega)} V^p_q \cdot l^n_{qc} n^n_{qc}
\]

where \(V^p_q = \begin{cases} U^n_p, & \text{if } p = q, \\ V_c, & \text{if } p \neq q. \end{cases} \)
Momentum

\[h_p^u = U_h(p) - \frac{\Delta t}{m_p} F_{pc} \]

\[\sum_{p \in Q(\partial \omega_c)} \mathcal{F}_{pc} = 0 \iff \mathcal{F}_{pc} = - \sum_{q \in Q(\partial \omega_c) \setminus p} \mathcal{F}_{qc} \]

\[H_p^u = U_h(p) - \frac{\Delta t}{m_p} (F_{pc} - \mathcal{F}_{pc}) = U_h(p) - \frac{\Delta t}{m_p} \sum_{q \in Q(\partial \omega_c)} \mathcal{F}_{q}^p \]

where \[\mathcal{F}_{q}^p = \begin{cases} F_{pc}, & \text{if } p = q, \\ \mathcal{F}_{qc}, & \text{if } p \neq q. \end{cases} \]

Total energy

\[h_p^e = e_h^c(p) - \frac{\Delta t}{m_p} U_p \cdot F_{pc} \]

\[H_p^e = e_h^c(p) - \frac{\Delta t}{m_p} (U_p \cdot F_{pc} - V_c \cdot \mathcal{F}_{pc}) = e_h^c(p) - \frac{\Delta t}{m_p} \sum_{q \in Q(\partial \omega_c)} V_q \cdot \mathcal{F}_{q}^p \]
Properties

\[\sum_{p \in Q(\partial \omega_c)} m_p^c h_p^\rho = \sum_{p \in Q(\partial \omega_c)} m_p^c H_p^\rho \]

\[\sum_{p \in Q(\partial \omega_c)} m_p^c h_p^\mu = \sum_{p \in Q(\partial \omega_c)} m_p^c H_p^\mu \]

\[\sum_{p \in Q(\partial \omega_c)} m_p^c h_p^e = \sum_{p \in Q(\partial \omega_c)} m_p^c H_p^e \]

Mimic the first-order scheme

1. \[\sum_{p \in Q(\partial \omega_c)} \mathcal{F}_{pc} = 0 \]

2. \[\sum_{q \in Q(\partial \omega_c)} \mathcal{F}_p^q = \sum_{q \in Q(\partial \omega_c)} P_h^c(p) l_q^n n_q^n - M_q c(V_q^p - U_h^c(p)) \]

3. \[\sum_{q \in Q(\partial \omega_c)} V_q^p \cdot \mathcal{F}_q^p = P_h^c(p) \sum_{q \in Q(\partial \omega_c)} V_q^p \cdot l_q^n n_q^n - \sum_{q \in Q(\partial \omega_c)} V_q^p \cdot M_q c(V_q^p - U_h^c(p)) \]
Artificial cell velocity and subcell forces

\[\mathbf{S}_{pc} = P_h^c(p)l_{pc}^n n_{pc}^n + (M_c - M_{qc})(\mathbf{V}_c - \mathbf{U}_h^c(p)) \]

where \(M_c = \sum_{p \in Q(\partial \omega_c)} M_{pc} \)

\[\mathbf{V}_c = \frac{1}{N_Q - 1} M_c^{-1} \sum_{q \in Q(\partial \omega_c)} \left((M_c - M_{qc})\mathbf{U}_h^c(q) - P_h^c(q)l_{qc}^n n_{qc}^n \right) \]

where \(N_Q = |Q(\partial \omega_c)| = N_P (d - 1) \) and \(N_P = |P(\omega_c)| \)

Convex combination

\[W_{c+1}^{n+1} = \frac{1}{m_c} \left(m_c^* W_c^* + \sum_{p \in Q(\partial \omega_c)} m_c^p H_c^p \right), \]

where \(H_c^p = (H_p^\rho, H_p^u, H_p^e)^t \) and \(m_c = m_c^* + \sum_{p \in Q(\partial \omega_c)} m_c^p \)
Finally, for the high-order cell-centered Lagrangian schemes presented, if

1. $W^n_c \in G$, $W^c_\star \in G$ and $\forall p \in Q(\partial \omega_c)$, $W^c_h(p) \in G$

2. $\Delta t \leq C_v \frac{m^c_p \left(\frac{1}{\rho}\right)^c_h(p)}{|(U^n_p - V_c). l_{pc}^n n_{pc}^n|}$, with $C_v < \min \left(1, \frac{\varepsilon^c_h(p)}{|P^c_h(p)| \left(\frac{1}{\rho}\right)^c_h(p)}\right)$

3. $\Delta t \leq \frac{1}{2} \sum_j Z_j l_j = \frac{m^c_p}{m^c_p} \frac{v^n_c}{a_c L_c}$

Then $W^{n+1}_c \in G$
Quantities involved

- $\forall p \in Q(\partial \omega_c), \ W^c_h(p) \in G$

\[
W^c_h = \frac{\sum_{q \in R_c \backslash Q(\partial \omega_c)} m^c_q W^c_{h}(q)}{\sum_{p \in R_c \backslash Q(\partial \omega_c)} m^c_p} \in G \quad \text{or} \quad \forall q \in R_c \backslash Q(\partial \omega_c), \ W^c_{h}(q) \in G
\]

Positive limitation

- $\tilde{\rho}^c_h = (\frac{1}{\rho})_c + \theta_{\rho} ((\frac{1}{\rho})_h - (\frac{1}{\rho})_c)$
- $\tilde{U}^c_h = U^c_c + \theta_{\varepsilon} (U^c_c - U^c_c)$
- $\tilde{e}^c_h = e^c_c + \theta_{\varepsilon} (e^c_c - e^c_c)$

where $\theta_{\rho} \in [0, 1]$ and $\theta_{\varepsilon} \in [0, 1]$
Riemann invariants differentials

- \(\frac{d\alpha}{dt} = \frac{dU}{t} \)
- \(\frac{d\alpha}{d\nu} = \frac{d\left(\frac{1}{\rho}\right)}{d\nu} - \frac{1}{\rho a} \frac{dU}{n} \)
- \(\frac{d\alpha}{d\rho} = \frac{d\left(\frac{1}{\rho}\right)}{d\rho} + \frac{1}{\rho a} \frac{dU}{n} \)
- \(\frac{d\alpha}{de} = \frac{de - U}{dU} + P \frac{d\left(\frac{1}{\rho}\right)}{d\rho} \)

Mean value linearization

- \(\alpha^{c}_{t,h} = U^{c}_{t} \cdot t \)
- \(\alpha^{-,h} = \left(\frac{1}{\rho}\right)_{h}^{c} - \frac{1}{Z_{c}} U^{c}_{h} \cdot n \)
- \(\alpha^{c}_{+,h} = \left(\frac{1}{\rho}\right)_{h}^{c} + \frac{1}{Z_{c}} U^{c}_{h} \cdot n \)
- \(\alpha^{c}_{e,h} = e^{c}_{h} - U^{c}_{0} \cdot U^{c}_{h} + P^{c}_{0} \left(\frac{1}{\rho}\right)_{h}^{c} \)

Unit direction ensuring symmetry preservation

- \(n = \frac{U^{c}_{0}}{\|U^{c}_{0}\|} \) and \(t = e_{z} \times \frac{U^{c}_{0}}{\|U^{c}_{0}\|} \)

Double specific volume limitation

- Standard limitation on \(\left(\frac{1}{\rho}\right)_{h} \) and on the Riemann invariants are performed
- Only the most limiting procedure is retained to avoid spurious oscillations
Stability

- Same stability results on the piecewise constant part W_c of the numerical solution W_h^c as for the first-order schemes
- To obtain the same stability properties on the whole piecewise polynomial solution W_h, the limitation at time t^n has to ensure that

$$\forall x \in \omega, \quad W_h(x) \in G$$

Then

- $\| (\frac{1}{\rho})_h^n \|_{L_1} = \| \frac{1}{\rho_0} \|_{L_1}$
- $\| e_h^n \|_{L_1} = \| e^n_0 \|_{L_1}$
- $\| K_h^n \|_{L_1} < \| e_h^n \|_{L_1}$
- $\| \mathbf{U}_h^n \|_{L_2}^2 < m_\omega + \| e_h^n \|_{L_2}^2$
1. Cell-Centered Lagrangian schemes

2. Lagrangian and Eulerian descriptions

3. Compatible first-order positivity-preserving discretization

4. High-order positivity-preserving extension

5. CCDG numerical results

6. Conclusion
Cylindrical Sod shock problem

(a) Initial time $t = 0$

(b) Final time $t = 1$

Figure: Density maps on a 100x5 polar mesh, with the second-order DG scheme
Cylindrical Sod shock problem

Figure: Density profile on a 100x5 polar mesh, at final time $t = 1$
Sedov point blast problem on a Cartesian grid

(a) Initial time $t = 0$

(b) Final time $t = 1$

Figure: Pressure maps on a 30x30 Cartesian mesh, with the second-order DG scheme
Sedov point blast problem on a Cartesian grid

(a) Density profiles

(b) Pressure profiles

Figure: Density and pressure profiles on a 30x30 Cartesian mesh, at final time $t = 1$
Sedov point blast problem on a polygonal grid

Figure: Final grids on mesh made of 775 polygonal cells, with the second-order DG scheme
Sedov point blast problem on a polygonal grid

(a) Density profiles

(b) Pressure profiles

Figure: Density and pressure profiles on mesh made of 775 polygonal cells, at final time $t = 1$
Cylindrical Sedov point blast problem

(a) Initial time $t = 0$

(b) Final time $t = 1$

Figure: Final grids on a 30x5 polar mesh, with the second-order DG scheme
Cylindrical Sedov point blast problem

(a) Density profiles

(b) Pressure profiles

Figure: Density and pressure profiles on a 30x5 polar mesh, at final time $t = 1$
Noh problem

(a) 1st order

(b) 2nd order

Figure: Final grids on a Cartesian grid made of 50 \times 50 cells, at final time $t = 0.6$
Noh problem

Figure: Density profile on a Cartesian grid made of 50×50 cells, at final time $t = 0.6$
Cylindrical Noh problem

(a) 1st order

(b) 2nd order

Figure: Final grids on a 50x5 polar mesh, at final time $t = 0.6$
Cylindrical Noh problem

Figure: Density profile on a 50x5 polar mesh, at final time $t = 0.6$
Saltzman problem

Figure: Final grids on a 10x100 deformed Cartesian mesh, at time $t = 0.6$
Saltzman problem

Figure: Density and pressure profiles on a 10x100 deformed Cartesian mesh, at time $t = 0.6$
Saltzman problem

Figure: Final grids on a 10x100 deformed Cartesian mesh, at time $t = 0.9$
Saltzman problem

Figure: Density and pressure profiles on a 10x100 deformed Cartesian mesh, at time $t = 0.9$
Taylor-Green vortex problem

(a) 1st order

(b) 2nd order

Figure: Final grids at final time $t = 0.75$, on a 10x10 Cartesian mesh
Taylor-Green vortex problem

<table>
<thead>
<tr>
<th>h</th>
<th>$E^h_{L_1}$</th>
<th>$q^h_{L_1}$</th>
<th>$E^h_{L_2}$</th>
<th>$q^h_{L_2}$</th>
<th>$E^h_{L_\infty}$</th>
<th>$q^h_{L_\infty}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{1}{10}$</td>
<td>7.31E-2</td>
<td>0.97</td>
<td>8.90E-2</td>
<td>0.96</td>
<td>2.19E-1</td>
<td>0.91</td>
</tr>
<tr>
<td>$\frac{1}{20}$</td>
<td>3.74E-2</td>
<td>0.99</td>
<td>4.57E-2</td>
<td>0.98</td>
<td>1.17E-1</td>
<td>0.95</td>
</tr>
<tr>
<td>$\frac{1}{40}$</td>
<td>1.89E-2</td>
<td>0.99</td>
<td>2.31E-2</td>
<td>0.99</td>
<td>6.06E-2</td>
<td>0.97</td>
</tr>
<tr>
<td>$\frac{1}{80}$</td>
<td>9.50E-3</td>
<td>1.00</td>
<td>1.16E-2</td>
<td>1.00</td>
<td>3.09E-2</td>
<td>0.99</td>
</tr>
<tr>
<td>$\frac{1}{160}$</td>
<td>4.76E-3</td>
<td>-</td>
<td>5.81E-3</td>
<td>-</td>
<td>1.56E-2</td>
<td>-</td>
</tr>
</tbody>
</table>

Table: Rate of convergence computed on the velocity at time $t = 0.1$
Taylor-Green vortex problem

<table>
<thead>
<tr>
<th>h</th>
<th>$E_{L_1}^h$</th>
<th>$q_{L_1}^h$</th>
<th>$E_{L_2}^h$</th>
<th>$q_{L_2}^h$</th>
<th>$E_{L_\infty}^h$</th>
<th>$q_{L_\infty}^h$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{1}{10}$</td>
<td>1.00E-2</td>
<td>2.14</td>
<td>1.40E-2</td>
<td>2.05</td>
<td>6.25E-2</td>
<td>1.58</td>
</tr>
<tr>
<td>$\frac{1}{20}$</td>
<td>2.27E-3</td>
<td>2.17</td>
<td>3.39E-3</td>
<td>2.14</td>
<td>2.10E-2</td>
<td>1.65</td>
</tr>
<tr>
<td>$\frac{1}{40}$</td>
<td>5.05E-4</td>
<td>2.14</td>
<td>7.66E-4</td>
<td>2.16</td>
<td>6.67E-3</td>
<td>1.92</td>
</tr>
<tr>
<td>$\frac{1}{80}$</td>
<td>1.14E-4</td>
<td>2.13</td>
<td>1.71E-4</td>
<td>2.16</td>
<td>1.76E-3</td>
<td>1.87</td>
</tr>
<tr>
<td>$\frac{1}{160}$</td>
<td>2.61E-5</td>
<td>-</td>
<td>3.83E-5</td>
<td>-</td>
<td>4.81E-4</td>
<td>-</td>
</tr>
</tbody>
</table>

Table: Rate of convergence computed on the velocity at time $t = 0.1$
Air-water-air problem

(a) Initial time \(t = 0 \)

(b) Final time \(t = 7 \times 10^{-3} \)

Figure: Density maps on a 120x9 polar mesh, for the second-order DG scheme
Air-water-air problem

Figure: Pressure maps on a 120x9 polar mesh, for the second-order DG scheme

(a) Initial time $t = 0$

(b) Final time $t = 7E-3$
Air-water-air problem

(a) Density profile

(b) Normal velocity profile

Figure: Density and normal velocity profiles on a 120x9 polar mesh, at final time $t = 7E-3$
Underwater TNT charge explosion

(a) Initial time $t = 0$
(b) Final time $t = 2.5E-4$

Figure: Density maps on a 120x9 polar mesh, for the second-order DG scheme
Underwater TNT charge exlosion

(a) Density profile
(b) Pressure profile

Figure: Density and pressure profiles on a 120x9 polar mesh, at final time $t = 2.5E-4$
1. Cell-Centered Lagrangian schemes

2. Lagrangian and Eulerian descriptions

3. Compatible first-order positivity-preserving discretization

4. High-order positivity-preserving extension

5. CCDG numerical results

6. Conclusion
Conclusions

- Demonstration of the positivity-preserving criteria of a whole class of cell-centered Lagrangian scheme, under particular time step constraints, for different EOS (such as ideal gas, stiffened-water or detonation JWL)
- Extension of the demonstration to high-order of accuracy, under particular limitation of the solution
- Demonstration of L_1 stability of the specific volume and total energy
- Control of the L_1 norm of the kinetic energy and of the L_2 norm of the velocity
- Improvement of the robustness

Perspectives

- Extension of the numerical applications to higher-order of accuracy
- Extension of the CCDG to solid dynamics such as hyperelasticity
